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Introduction

This presentation is a part of my work in the statistical analysis of time
series, here with a focus on the mathematical aspects, particularly those
related to polynomials

Examples of time series are the Consumer Price Index (CPI) and industrial
production but there are lots (from yearly data to observations every
millisecond)

I have worked mainly on time series modeling using the so-called ARMA
models and their extensions

This makes a heavy use of polynomials

In particular, multivariate time series and, hence, vector ARMA or
VARMA models, require polynomials with matrix coefficients or matrix
polynomials

My own research is more specifically on time-dependent or time-varying
models, i.e., models where the coefficients vary with time, and I will
mention that in most cases
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I will start with two series and sketch how they can be modeled without
explanations

The purpose is just to show the models and the polynomials that define
them

If I have time at the end, I will shortly explain what are the
AutoCorrelation Function (ACF) and Partial ACF (PACF) that I will use

I will start with two monthly time series

the consumer price index or CPI for Belgium in a quiet period
(2009.01 to 2021.12)
the Industrial Production of Belgium (PRODIN) from 2001.01 to
2019.12

I will not show a complete example of a multivariate time series because it
would be too difficult, only the final result

I have put references at the end; the presentation is available upon request
(I have also a less detailed presentation in French) (Guy.Melard@ulb.be)
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Fitted model (1)
=== MODEL DESCRIPTION                  FORM      DEGREE/ORD PARAMETERS 
NUMBER
 - SEASONAL PERIOD                               12
 - DIFFERENCE                REGULAR              1
 - DIFFERENCE                SEASONAL             1
 - ARMA MODEL                         
   AUTOREGRESSIVE POLYNOMIAL REGULAR   2     AR   2
NON LINEAR ESTIMATION:   …      
FINAL VALUES OF THE PARAMETERS                 
   NAME      VALUE         STD ERROR   T-VALUE
1 AR   1   -.78932       5.98608E-02   -13.2
2 AR   2   -.49156       5.96132E-02    -8.2
*** WARNING-A MEAN LEVEL IS NOT INCLUDED IN THE MODEL
=== SUMMARY MEASURES  <V> 
 SUM OF SQUARES: COMPUTED =  4018.60 ADJUSTED 4002.15    
 VARIANCE ESTIMATES: BIASED =  18.61 UNBIASED   18.79    
 NUMBER OF PARAMETERS: 2 STANDARD DEVIATION =  4.33468    
 INFORMATION CRITERIA: AIC =  1320.99  SBIC =  1331.90    
 === RESIDUAL ANALYSIS WITH  215 RESIDUALS, BEGINNING AT TIME FEB2001===
 MEAN = -.101266, T-STATISTIC = -.34 (FOR TESTING ZERO MEAN)

• Seasonal period: 12
• Delta or Δ
• Delta12 or Δ12

• 1 − (−0.779) L  − (−0.492) L2 

• σ2 = 18,79
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Fitted model (2)
=== MODEL DESCRIPTION                  FORM      DEGREE/ORD PARAMETERS
 - SEASONAL PERIOD                               12
 - DIFFERENCE                REGULAR              1
 - DIFFERENCE                SEASONAL             1
 - ARMA MODEL                         
   AUTOREGRESSIVE POLYNOMIAL REGULAR   2     AR  nn
   MOVING AVERAGE POLYNOMIAL SEASONAL  1     SMA nn      1
 NON LINEAR ESTIMATION: …        
FINAL VALUES OF THE PARAMETERS                    
   NAME      VALUE         STD ERROR   T-VALUE
1  AR   1   -.87746       5.64437E-02   -15.5
2  AR   2   -.58596       5.59854E-02   -10.5
3  SMA  1    .82206       4.27206E-02    19.2
 === ROOTS OF AR AND MA POLYNOMIALS <Z>
 AR ROOTS         MODULUS  PERIOD
    COMPLEX PAIR    1.306    2.88
 MA ROOTS         MODULUS  PERIOD
    REAL            1.016
 === SUMMARY MEASURES   
 SUM OF SQUARES: COMPUTED = 2694.14 ADJUSTED 2694.14    
 VARIANCE ESTIMATES: BIASED = 12.65 UNBIASED = 12.83    
 NUMBER OF PARAMETERS: 3 STANDARD DEVIATION = 3.58179    
=== RESIDUAL ANALYSIS WITH  213 RESIDUALS, BEGINNING AT TIME APR2001===
 MEAN = -.336177, T-STATISTIC = -1.37 (FOR TESTING ZERO MEAN)

• Seasonal period: 12
• Delta or Δ
• Delta12 or Δ12

• 1 − (−0.877) L  − (−0.586) L2 
• 1  − (0.822) L12

• σ2 = 18,79
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Conclusion of the statistical analysis

For the Belgian CPI, we have found a very simple model

∆CPIt = CPIt − CPIt−1 = µ+ ϵt , (1)

where the estimate of µ is 0.123 and the errors ϵt have mean 0 and
standard deviation 0.221. ∆ is the difference operator (often denoted ∇)

For the Belgian industrial production, we found a more complex model for
˜PRODINt = ∆∆12PRODINt , where

∆12PRODINt = PRODINt − PRODINt−12 is the seasonal difference
operator, hence

˜PRODINt = ∆∆12PRODINt

= PRODINt − PRODINt−1 − PRODINt−12 + PRODINt−13 (2)
Using that notation, the series is represented by

˜PRODINt+0.877 ˜PRODINt−1+0.586 ˜PRODINt−2 = ϵt− 0.822ϵt−12 (3)
To write it algebraically, we need to introduce polynomials in the lag
operator L (often B instead) such that Lyt = yt−1, L

2yt = yt−2,
L12ϵt = ϵt−12, etc

In particular ∆ = 1− L and ∆12 = 1− L12, and this explains (2) since
(1− L)(1− L12) = 1− L− L12 + L13
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AR and MA polynomials

With ˜PRODINt = ∆∆12PRODINt , we have seen the model equation (3)

˜PRODINt + 0.877 ˜PRODINt−1 + 0.586 ˜PRODINt−2 = ϵt − 0.822 ϵt−12

Let us define the autoregressive or AR operator A(L) = 1− a1L− a2L
2,

with a1 = −0.877 and a2 = −0.586, a polynomial of degree p = 2 acting

on ˜PRODINt and the so-called moving average or MA operator
B(L) = 1− b12L

12, b12 = 0.822, a polynomial of degree q = 12 (called a
seasonal MA polynomial)

We have therefore what is called an ARMA(2,12) model for
∆∆12PRODINt and it can be written in a one-line equation

[1− (−0.877)L− (−0.586)L2]∆∆12PRODINt = (1− 0.822L12)ϵt

For an ARMA(p, q) model, the general equation is

(1− a1L− ...− apL
p)yt = (1− b1L− ...− bqL

q)ϵt

we will denote the AR coefficients −a1, −a2, ..., −ap and the MA
coefficients −b1, −b2, ..., −bq [The minus sign is purely conventional,
mainly for the MA polynomial, Box & Jenkins (1970)]
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Seasonal ARMA and ARIMA models

More generally, we can have the regular and the seasonal AR polynomials
and the regular and the seasonal MA polynomials, Box et al. (2015)

If their respective degrees are denoted p, P, q, and Q, we can speak of a
seasonal ARMA model of orders (p, q) and (P,Q) with period 12 here

In our example p = 2, P = 0, q = 0, and Q = 1, hence a seasonal
ARMA(2, 0)(0, 1)12, where the subscript 12 reminds the seasonal period

Also, noting that here we have s = 1 and S = 1 as degrees of the (regular)
difference and seasonal difference, respectively, I can mention the now
traditional (seasonal) ARIMA notation: ARIMA(2, 1, 0)(0, 1, 1)12, where
the middle integers refer to the differences

The letter ”I” refers to integration, the inverse operator of the difference.
We will say that our series CPI and PRODIN are integrated. The latter is
even seasonally integrated.

In this introductory talk, we will only treat the products of the regular and
seasonal polynomials and speak of the AR and MA polynomials

So we have an ARMA(2, 12) model, with AR coefficients a1 = −0.877 and
a2 = −0.586, and MA coefficients b1 = 0, b2 = 0, ..., b11 = 0, and
b12 = 0.822
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Digression on statistics

Most statistical theories and applications are about random samples,
meaning that the observations are independent of each other

This is not true in time series: there is no reason why the Belgian industrial
production of this month is independent of that in the previous months

We can perhaps consider the realizations of the ϵt as being independent
like the differences of the Belgian CPIt

This is the basis of the theory of time series which treats them as
realizations of a stochastic process, a sequence of possibly dependent
random variables

Usually, the theory is about stationary stochastic processes

A stationary stochastic process is a sequence of possibly dependent
random variables that have the same mean and the same variance (+ a
condition on lag-dependency, see later)

The differences of CPIt , t = 1, ..., n, and the residuals of the model for
∆∆12PRODINt , t = 1, ..., n, can perhaps be considered as realizations of a
stationary stochastic process, but neither CPIt , t = 1, ..., n, nor PRODINt ,
t = 1, ..., n, because of the trend, the variations in level, and/or the
seasonality
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Differences versus AR and MA polynomials

We come back to the model for PRODIN
The difference operators have the particularity that they have a unit root:
∆ = 1− L has root 1 while ∆12 = 1− L12 has 12 roots including two real
ones 1 and −1 and 10 complex roots, the 12-th complex roots of 1
The AR and MA operators have the particularity that they have roots
larger than 1 (in modulus)
In the example, for the AR polynomial [1− (−0, 877)L− (−0, 586)L2] with
complex roots since δ = 0.8772 − 4∗ 0.586 = −1.574 < 0: −0.439± 0.627i
with product 1/0.586 = 1.707 = 1.3062, and for the MA polynomial
(1− 0, 822L12), the 12-th complex roots of 1/0.822 = 1.01612 > 1
Indeed, an ARMA model like the one defined by the model for

zt = ∆∆12 ˜PRODINt =

(1− (−0.877)L− (−0.586)L2)zt = (1− 0.822L12)ϵt (4)

is considered as a stationary stochastic process, if we suppose that the ϵt ,
t = 1, ..., n, are independent random variables with mean 0 and a constant
variance σ2 = 12.83
Note that no AR root is an MA root and vice-versa
If we have (1− 0.5L)yt = (1− 0.5L)ϵt , a simpler model is yt = ϵt and it is
not possible to estimate a1 and b1. This is non-identifiability
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Parameter estimation

We are in a statistical context

We have a sample of n observations of a time series yt , t = 1, ..., n

We want to infer the true unknown population

For instance, find a model for PRODIN and estimate its parameters

Let us denote the parameters by θ and their unknown true value by θ0

(as a matter of fact, we even do not know the true model, if it exists)

In simpler contexts (estimation of the mean, of a correlation or regression
coefficient), we can invoke principles like least-squares (minimizing the
sum of squared errors), maximum likelihood, etc.

For instance, if we suppose yt = a1yt−1 + ϵt , we write yt − θyt−1 = et(θ);
an estimate of θ is obtained by minimizing the sum of e2t (θ) where the
residual et(θ) = yt − θyt−1, and this yields an estimate

θ̂ = (
∑n

t=2 ytyt−1)/(
∑n

t=2 y
2
t−1)

More generally, obtaining the residuals et(θ) and being able to obtain
their derivatives with respect to θ is crucial

In time series analysis, we use least squares or, better, the Gaussian
likelihood method that has the least starting effects

In general, except for AR(p) models which are linear, we need to use
numerical optimization
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Implications

It should be clear that most (not all) of the statistical results in time series
suppose a stationary stochastic process behind

This is the case, in particular, for the ACF and PACF presented quickly at
the beginning but also for the estimation method that led to our estimates
(based on a maximum likelihood principle) that was largely skipped

Moreover, statistical estimation results are often (if not always) accepted if
and only if they are supported by

a law of large numbers: convergence in some sense of the estimator
θ̂n to the true value θ when n → ∞, and
a central limit theorem: the difference θ̂n − θ times

√
n converges in

law to a normal distribution when n → ∞
These results are standard for most of statistics but were harder to obtain
for time series and practically only under the stationarity assumption

There is well a theory for testing the presence of a unit root in an AR
polynomial but it rests on more advanced results in probability theory
(Brownian and Wiener processes)

As said above, the models for CPI and for PRODIN are not stationary,
only those for ∆CPI and ∆∆12PRODIN can be seen as stationary
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MA form

Let (1− a1L− ...− apL
p)yt = (1− b1L− ...− bqL

q)ϵt
An MA form consists of writing yt as a function of present and past ϵt ’s
Let θ be the set of parameters, the aj ’s and the bj ’s, θ

0 their true value
We imagine that the error ϵt can be computed by the recurrence

ϵt = yt − a1yt−1 − ...− apyt−p + b1ϵt−1 + ...+ bqϵt−q

Since the ϵt are unknown we consider the residuals

et(θ) = yt − a1yt−1 − ...− apyt−p + b1et−1(θ) + ...+ bqet−q(θ)

Note et(θ
0) = ϵt . The derivatives of et(θ) with respect to θj , j = 1, ...,m,

are less easy to obtain because we have products for the MA part
There is one case which is easy to treat: an AR(1) process defined by
yt = a1yt−1 + ϵt , hence θ

0 = a1, the model is yt = θyt−1 + et(θ), and

et(θ) = yt − θyt−1 = ϵt + (a1 − θ)yt−1

= ϵt + (a1 − θ)ϵt−1 + a1(a1 − θ)ϵt−2 + a21(a1 − θ)ϵt−3 + ... (5)

For the derivatives ∂et(θ)/∂θ, since the yt ’s and ϕ don’t depend on θ:

∂et(θ)

∂θ
= −ϵt−1 − a1ϵt−2 − a21ϵt−3 − ... (6)

and we have an exponential decrease for both (5) and (6) if |a1| < 1
Guy Mélard Polynomials and statistical analysis of time series models 14/38
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And multivariate time series?

Each time series can be studied individually but a collective/multivariate
analysis can improve the results

In particular, for related time series like housing sales & housing starts

We will not analyze them, simply extend the ARMA models to vector
ARMA or VARMA models

If the observations at time t are a r × 1 vector yt , we replace the scalar
AR coefficients a1, a2, ..., ap and the scalar MA coefficients b1, b2, ..., bq
by r × r matrices (and the constant 1 by Ir , the r × r identity matrix)

It is intentional that we use the same notations aj , j = 1, ..., p, and bj ,
j = 1, ..., q, either for scalar or matrix AR and MA, respectively

Of course, the ϵt will be independent r × 1 vectors with now a covariance
matrix Σ (symmetric and strictly positive definite)

Let θ be the set of parameters (the entries in the aj ’s and the bj ’s), the
residual et(θ) at time t can be obtained by recurrence

et(θ) = yt − a1yt−1 − ...− apyt−p + b1et−1(θ) + ...+ bqet−q(θ)

Again, the derivative of et(θ) with respect to θj , j = 1, ...,m are less easy
to obtain because we have products for the MA part
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An example - 1

The U.S. business investment (in diff.) and variations of inventories data first
studied by Lütkepohl (2005, Section 3.8.2) are quarterly seasonally adjusted
data over the period from the first quarter of 1947 to the fourth of 1972. They
are used for several purposes, including the illustration of a VARMA(1,1)
model by Reinsel (1998).
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An example - 2

We considered the series up to 1971, quarter 4.
We start from the VARMA(1, 1) model fitted by Box et al. (2015,
Section 14.7.2) using the MTS package in R:

(yt − µ) = a1(xt−1 − µ) + ϵt − b1ϵt−1.

Instead of a conditional estimation method, we preferred to use an exact
maximum likelihood estimation method and obtained the following estimates
(with t statistics):

â1 =

 0.438
(2.38)

−0.196
(−2.92)

0.645
(3.01)

0.765
(9.52)

 , b̂1 =

 −0.041
(−0.21)

−0.311
(−3.69)

0.328
(1.13)

0.205
(1.56)

 ,

with the estimate of Σ

Σ̂ =

(
5.4660 1.8857
1.8857 18.4219

)
.

The (not mentioned) mean vector µ is taken as the sample average
(0.9737, 6.0232)T .
Let the vector of parameters (of interest) as θ, here the entries in a1 and b1,
plus µ.
The 3 entries in Σ are nuisance parameters, estimated a posteriori
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Time-dependent ARMA model

This is part of our own research (since 1981!), first if r = 1

We replace the constant coefficients with time-dependent (td)
coefficients, for instance for an autoregressive polynomial:
At(L) = 1− at1L− at2L

2

That leads to tdARMA and tdARIMA models with an estimation
algorithm proposed in 1982

These coefficients can even depend on the series length n, for instance
at1 = a′1 + (t/n)a′′1 , leading to tdARMA(n). The vector of parameters θ
includes a′1 and a′′1

I don’t show the PRODIN time series: the results are not conclusive

In the VARMA(1, 1) example, the results are more interesting: replacing
the constant coefficients with linear functions of time, e.g.,
at = a′ + a”(t − 50)/98, we obtained the estimates (with t statistics1):

â′1 :

 0.421
(2.272)

−0.199
(−2.946)

0.571
(2.903)

0.792
(10.590)

 , â′′1 :

 0
(−−−)

0
(−−−)

−0.780
(−2.181)

0.
(−−−)

 , b̂′
1 :

 0.060
(0.281)

0.318
(3.689)

−0.178
(−0.639)

−0.298
(−2.027)


1But is it valid? Introducing b′′

1 also failed

Guy Mélard Polynomials and statistical analysis of time series models 19/38



Introduction
ARMA models and statistics

VARMA and time-dependent models
Other involvements of polynomials and conclusions

VARMA models
Time-dependent models
Estimation theory

Time-dependent ARMA model: implications

Big problem: even after differences, the underlying process is not
stationary hence the whole asymptotic theory has to be reinvented using
deeper probability results of nonstandard

a law of large numbers (one published in 2009) and
a central limit theorem

It was done in steps: Azrak thesis for tdAR(p) in 1996, Azrak-M (2006)
for tdARMA(p, q), Alj, Azrak, Ley, & M (2017) for tdVARMA, Alj, Azrak,
& M (2024) for tdVARMA(n)

The main tool was already mentioned for an AR(1) model with a constant
coefficient: the infinite MA form in the ϵt−k , writing a development of the
residual et(θ) and its derivative with respect to the parameter θj ,
j = 1, ...,m, where m is the number of parameters in the model:

et(θ) = ϵt + ψt1ϵt−1 + ψt2ϵt−2 + ...+ ψtkϵt−k + ...

∂et(θ)

∂θj
= ψtj1ϵt−1 + ψtj2ϵt−2 + ...+ ψtjkϵt−k + ...

We should have td coefficients decreasing exponentially with k

We said it is already difficult for ARMA(p, q) models, not to say
VARMA(p, q) and tdVARMA(p, q) models
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MA form in the td case

For a tdAR(1) model defined by yt = at1(θ)yt−1 + ϵt :

yt = ϵt + at1(θ)yt−1 = ϵt + at1(θ)ϵt−1 + at1(θ)at−1,1(θ)ϵt−2 + ... (7)

so no longer necessarily an exponential decrease but well products of
coefficients for different lags: for ϵt−k , we have at1at−1,1...at−k+1,1

Similarly for the residuals et(θ) and (but more complex) their derivatives
∂et(θ)/∂θj with respect to parameter θj (non longer a coefficient)

Of course, it is even more complex for tdARMA(p, q) models

Note, however, that (7) still holds for matrix coefficients of a tdVAR(1)
model, simply replacing products of scalars by products of matrices

The key is putting a tdARMA(p, q) model into a tdVAR(1) form

Strangely, the idea came when trying to handle VARMA(p, q) models as
special cases of tdARMA(p, q)

For that purpose, we need to introduce the companion matrix of a
polynomial
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Companion matrix

Let us go back first to the scalar case, r = 1

Let us consider a monic polynomial of degree d :
p(x) = xd + cd−1x

d−1 + ...+ c1x + c0. Its companion matrix is (at least
one form, others can be considered)

C(p) =


−cd−1 · · · −c1 −c0

1 0 0 0
0 1 0 0
...

. . .
...

...
0 · · · 1 0

 (8)

The roots of p are the eigenvalues of that matrix

The reciprocal polynomial of p is defined by
p∗(x) = xdp(1/x) = 1 + cd−1x + ...+ c1x

d−1 + c0x
d

Note that it is not monic: it has the form of an AR or MA polynomial

The roots of p∗ are the inverse of those of p

We will need the Frobenius norm of a matrix M: ||M||F =
√

tr(MTM),
where T indicates transposition. For example,

||M||F =
√

c20 + c21 + ...+ c2d−1 + d − 1
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Companion matrix: example and generalization

The AR and MA polynomials are not monic so we work with the reciprocal
polynomials p∗(x) = 1 + cd−1x + ...+ c0x

d

For an AR polynomial of degree 1, A(x) = 1− a1x with root 1/a1, and
its reciprocal polynomial A∗(x) = x − a1: C(A) = a1, with eigenvalue 1/a1
Let an AR polynomial of degree 2, A(x) = 1− a1x − a2x

2, and its

reciprocal polynomial A∗(x) = x2 − a1x − a2: C(A) =

(
a1 a2
1 0

)
The eigenvalues of C(A) are the solutions of

det

{(
1 0
0 1

)
− λ

(
a1 a2
1 0

)}
= det

{(
1− λa1 −λa2
−λ 1

)}
= 0

or 1− λa1 − λ2a2 = 0. These are −(a1 ±
√

a21 + 4a2)/2a2 with sum
−a1/a2 and product −1/a2
If these solutions are complex, the condition for roots greater than 1 in
modulus is that |a2| < 1
We can generalize the companion matrix to matrix polynomials, e.g.,
A(x) = Ir − a1x − a2x

2 or A∗(x) = x2 − a1x − a2 but not the roots of
matrix polynomials: we need to consider the roots of det(A(x)) or those of
det(A∗(x)) and they are called the eigenvalues of these matrix
polynomials
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VAR(1) for of an ARMA(p, q) model

This is well known (*). Let us consider, for instance, an ARMA(2, 2)
model for the process yt = a1yt−1 + a2yt−2 + ϵt − b1ϵt−1 − b2ϵt−2:
yt = a1(θ)yt−1 + a2(θ)yt−2 + et(θ)− b1(θ)et−1(θ)− b2(θ)et−2(θ)
We define Yt(θ) = (yt , yt−1, et(θ), et−1(θ))

T , Et(θ) = (et(θ), 0, et(θ), 0)
T ,

and Et = Et(θ
0) = (ϵt , 0, ϵt , 0)

T

We can write Yt(θ) = A(θ)Yt−1(θ) + Et(θ), more precisely
yt
yt−1

et(θ)
et−1(θ)

 =


a1(θ) a2(θ) −b1(θ) −b2(θ)
1 0 0 0
0 0 0 0
0 0 1 0




yt−1

yt−2

et−1(θ)
et−2(θ)

+


et(θ)
0

et(θ)
0

 (9)

For an ARMA(p, q), A(θ) is a (p + q)× (p + q) matrix

A(θ) =

(
C(A(θ)) C̃(−B(θ))

0qp Sqq

)
where C(A(θ)) is the companion matrix

of the (reciprocal) AR polynomial, C̃(−B(θ)) is a zero matrix with a first
row like the companion matrix of minus the (reciprocal) MA polynomial or
−B(θ), 0qp is a zero matrix, and Sqq is a lower-shifted identity matrix
Note that (9) remains valid for matrix instead of scalar coefficients but
using block matrices, then A(θ) is a (p + q)× (p + q) block matrix with
r × r blocks
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(*)References for VAR(1) form for ARMA(p, q) models

Taken from M (2022, p. 99)

A representation of an ARMA model in tdVAR(1) form is not new, see
Lütkepohl (1991, 2005, pp. 616-617)

It was used by Francq and Gautier (2004) for tdARMA models and was
detailed in a working paper by Francq and Gautier (2003). It was
described there using a state-space representation

Note that Francq and Zaköıan (2001) propose a similar technique for
building a Markovian representation for Markov-switching VARMA models.
See also Boubacar Mäınassara and Rabehasaina (2020)

The purpose of these authors was to obtain a unique strictly stationary
solution.

In a sense, we combine features from those two papers by Francq and
Gautier (2004) and Francq and Zaköıan (2001)
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tdVAR(1) for a tdARMA(p, q) model

It is the same! Let us consider, for instance, a tdARMA(2, 2) model for
the process yt = at1yt−1 + at2yt−2 + ϵt − bt1ϵt−1 − bt2ϵt−2:
yt = at1(θ)yt−1 + at2(θ)yt−2 + et(θ)− bt1(θ)et−1(θ)− bt2(θ)et−2(θ)

We can write Yt(θ) = At(θ)Yt−1(θ) + Et(θ), more precisely
yt
. . .

yt−p+1

et(θ)
. . .

et−q+1(θ)

 =


C(At(θ)) C̃(−Bt(θ))

0qp Sqq




yt−1

. . .
yt−p

et−1(θ)
. . .

et−q(θ)

+


et(θ)
0
. . .
et(θ)
0
. . .

 (10)

where C(At(θ)) is the companion matrix of the (reciprocal) tdAR
polynomial At(θ), C̃(−Bt(θ)) is a zero matrix with a first row like the
companion matrix of minus the (reciprocal) tdMA polynomial or −Bt(θ),
0qp is a zero matrix, and Sqq is a lower-shifted identity matrix

Note again that (10) remains valid for matrix instead of scalar coefficients
but using block matrices, and At(θ) is a (p + q)× (p + q) block matrix
with r × r blocks
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Treatment of ARMA models

We start from the VAR(1) form for Yt(θ): Yt(θ) = A(θ)Yt−1(θ) + Et(θ)
Our aim: a tdMA form for et(θ). Let Et = Et(θ

0) = (ϵt , 0, . . . , ϵt , 0, . . . 0)
T

For an ARMA(2,2), we define two constant matrices

J =


0 0 0 0
0 1 0 0
−1 0 0 0
0 0 0 1

 and K =


1 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0


So A(θ) =

(
C(A(θ)) C̃(−B(θ))

0qp Sqq

)
, JA(θ) =

(
Spp 0pq

C̃(−A(θ)) C(B(θ))

)
,

with symmetric notations for C̃(A(θ)) and C(B(θ)). It can be shown that

Yt(θ) =
t−1∑
k=0

Ψk(θ)Et−k , where Ψk(θ) =
k∑

s=0

(JA(θ))k−sK(A)s

But we have

(A(θ))k =

(
C k(A(θ)) C̃k(−B(θ))

0qp Sk
qq

)
, (JA(θ))k =

(
Sk
pp 0pq

C̃k(−A(θ)) C k(B(θ))

)
where we do not detail C̃k(−B(θ)) nor C̃k(−A(θ)) but Sk

qq = 0qq and
Sk
pp = 0pp for k > p + q. Note the presence of C k(A(θ)) and C k(B(θ))
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VARMA models and derivatives of Ψk(θ)

Let A = A(θ0). Then, if all the roots of A(θ0) and B(θ0) are greater than
1/Φ in modulus, with Φ < 1, then the Frobenius norm of (A)k and (JA)k

are smaller than cΦk (c constant); the same can be deduced for Ψk(θ
0)

Once the Ψk(θ
0) are obtained, there is no problem with obtaining an MA

form for et(θ) since Yt(θ) = (yt , yt−1, et(θ), et−1(θ))
T , with the same

exponentially decreasing property for the coefficients ψk(θ
0)

First, there is no problem to have an ARMA(p, q) model

Second, it works also for a VARMA(p, q) model, by replacing 1 with Ir , K ,
J, and polynomial roots with eigenvalues

Third, the exponential decrease holds also for the derivatives of Ψk(θ)
and those of ψk(θ), at θ = θ0

This, together with other conditions that cannot be detailed here
(identifiability, see later; existence of fourth-order moments for the ϵt ; ...),
it is possible to prove the asymptotic properties of convergence and
normality of the estimator

It is worth noting that the present proof is based on similar arguments but
for time-dependent VARMA models, see next slide or M (2022)

Note that the standard proof is somewhat longer than mine
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Time-dependent VARMA or tdVARMA models

Indeed, nearly everything in the last two slides could be done for
tdVARMA(p, q) models on the basis of a tdVAR(1) form
We replace everywhere the matrix polynomials A(θ) and B(θ) with At(θ)
and Bt(θ), respectively, and of course, Ψk with Ψtk , ψk with ψtk

Then, we use the theory developed by Alj, Azrak, Ley, & M (2017)
The coefficients can also depend on the length n of the series but then we
have to rely to another paper by Alj, Azrak, and M (2024) and M (2024)
Instead of the complex assumptions given there, we suppose a sufficient
condition: the roots of det(At(θ

0)) and det(Bt(θ
0)) are greater than 1

We cannot prove all the assumptions in that paper so some of them are
still there but are not interesting given on our focus to the polynomials
One can wonder if the time-dependent models are really useful in
practice? The answer: yes, but the improvement is not always sensible
For univariate models, M (2023) has analyzed a dataset of industrial
production in the US and obtained that about one-half of the series
benefit from time-dependent ARMA models although the forecasts
obtained are rarely much better
There is presently no analog study for multivariate time series
We show now some other aspects of polynomials: (i) the equality of roots
or eigenvalues, (ii) the information matrix, and (iii) the theoretical ACF
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Equality of roots

Suppose we have two (scalar) polynomials A(x) and B(x) of respective
degrees p and q, say A(x) = a0 + a1x + ...+ ap−1x

p−1 + apx
p and

B(x) = b0 + b1x + ...+ bq−1x
q−1 + bqx

q. Obtaining the exact roots of
polynomials can only be done for degrees at most 4. Otherwise, it has to
be done numerically and it is often challenging
On the contrary, checking if two polynomials have at least a common root
is easy to do whatever their degrees
It makes use of a Sylvester matrix associated with the two polynomials: a
square (p + q) matrix, obtained from the coefficients and shifts of them.

Example: p = 3, q = 2: Spq(A,B) =


a3 a2 a1 a0 0
0 a3 a2 a1 a0
b2 b1 b0 0 0
0 b2 b1 b0 0
0 0 b2 b1 b0


Its determinant is called the resultant of the two polynomials
The resultant is zero if the polynomials have at least a common root
More generally, the rank of the Sylvester matrix is related to the degree of
the greatest common divisor of the two polynomials
It can be used to check for identifiability: no common root for AR and
MA
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Generalization to matrix polynomials

The purpose is to check if two matrix polynomials A(x) and B(x) of
respective degrees p and q, and common dimension r , have at least a
common eigenvalue (root of their determinant)

It can be seen that the Sylvester matrix is then not useful

It should be replaced by a so-called tensor Sylvester matrix:
S⊗
pq(A,B) = Spq(Ir ⊗ A,B ⊗ Ir ), where ⊗ represents the Kronecker

product between matrices Mns and Npq which is the np × sq matrix

M ⊗ N =

m11N . . . m1sN
...

. . .
...

mn1N . . . mnsN


Similarly as when r = 1, S⊗

pq(A,B) is a resultant and is singular when there
is at least one common eigenvalue between A and B

Note, however, that identifiability for VARMA models is that the AR and
MA polynomials do not have a common (non-constant) left factor

No common eigenvalues guarantee identifiability but there can be common
eigenvalues between the two matrix polynomials. So we have only a
sufficient condition of identifiability
Finally, this is not for time-dependent ARMA or VARMA models
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Information matrix

We don’t have spoken of the (Fisher) information matrix until now

We have well mentioned, under some assumptions (including on the roots
of the AR and MA polynomials), asymptotic normality without details

As a matter of fact, it is
√
n(θ̂n − θ0) → N(0,V−1) when n → ∞ in

distribution, where the asymptotic covariance matrix V−1 is the inverse
of the information matrix V

In practice, an estimate of V is obtained as a by-product of numerical
estimation but here are alternative approaches

The information matrix V (θ) is defined as a mathematical expectation at
θ of the matrix defined by (∂et(θ)/∂θ

T )TΣ−1(∂et(θ)/∂θ
T )

We consider here a Gaussian stationary ARMA or VARMA(p, q) model;
then V (θ) is the same for all t

Then, it is also possible to obtain the V (θ) as an integral of a matrix
composed of rational functions with polynomials involving the AR and
MA polynomials (or entries if r > 1)

With co-author Klein, since 1989, I have developed algorithms for
computing the information matrix for univariate models (r = 1)

These integrals can be computed using recurrences with polynomials of
decreasing degrees

Guy Mélard Polynomials and statistical analysis of time series models 33/38



Introduction
ARMA models and statistics

VARMA and time-dependent models
Other involvements of polynomials and conclusions

Equality of roots
Information matrix
Theoretical ACF
Conclusions

An algorithm for VARMA models

More recently, Klein and M (2023) have published an algorithm for
Mathematica, the program for symbolic mathematical computation, see
the next slide

It is for ARMA and even VARMA models

Advantages: it is short (see next slide) and exact; inconveniences: the
entries need to be entered as rational numbers, not decimal numbers, and
it takes much time

Indeed, integration is performed symbolically, not numerically

It even works with symbolic entries but then still slower

Note that there is a generalization for VARMAX models (VARMA models
with added regressors) with two matrix integrals instead of one

The resulting information matrix is denoted Fcal on the next slide

Like our other algorithms, it is not for time-dependent models

I have also produced code for other (open-source) symbolic software
packages like Maxima and Octave (a clone of Matlab), not using
integration but well calculations of residues (Cauchy) or with the old
Söderstrom (1984) algorithm we used in the 1990s but symbolically now
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Mathematica program of the information matrix

Figure: 1. Mathematica Notebook to compute the information matrix Fcal of a VARMA model
defined by the matrix polynomials A(z) and B(z); up[z] is [1 z ... zp−1], In is the identity matrix of
order r (6 lines!)
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Theoretical ACF

Here only the scalar case, r = 1

Stationarity of a stochastic process yt ; t ∈ Z supposed of constant mean 0
and second-order moments:

var(yt) = E(y 2
t ) = σ2, ∀t

cov(yt , yt−k) = γk , ∀t (not mentioned until now)

The theoretical ACF is defined by: γk/σ
2

Let a MA(q) process, defined by yt = ϵt − b1ϵt−1 − ...− bqϵt−q with
cov(ϵtϵt−k) = 0, ∀k, ∀t
Then γk = cov(yt , yt−k) = 0, ∀k > q

The sample ACF is an estimate of γk/σ
2, hence the ACF of a MA(q)

process is (statistically) truncated for k > q

The theoretical PACF of Partial ACF is more difficult to introduce
(defined as partial correlations or as ratio between two k × k
determinants) but the PACF of an AR(p) process is truncated for k > p

The sample PACF of an AR(p) process is (statistically) truncated for
k > p

For an introduction to this, M (2007, Chapter 9) and on the method we
used for the examples, M (2007, Chapter 10)

The properties of the ACF can be extended to VMA models
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Computation of the theoretical ACF

For an ARMA(p, q) model, the theoretical ACF can be computed by
solving a system of p linear equations, hence of the order of p3

operations

There are other, faster, algorithms with the order of p2 operations, like
Tunnicliffe-Wilson (1979) or Demeure & Mullis (1989)

Moreover, these algorithms include a check of the condition related to the
roots

Indeed, they are related to the Lehmer-Schur algorithm for checking the
position of the roots with respect to the unit circle of the Gauss plane
using a sequence of polynomials with decreasing degrees, e.g. M (1985)

The treatment of VARMA models is not comparable

They are used in fast algorithms for computing the Gaussian likelihood,
where a problem of inverting the n× n matrix covariance matrix of the yt ’s
is replaced by nmax(p, q)2 operations, e.g., M (1985)
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Conclusions

This talk was devoted to the use of polynomials, including matrix
polynomials, in the statistical analysis of time series

The treatment that we have shown has used scalar and matrix polynomials
to obtain the results needed for parameter estimation in ARMA and
VARMA models

We have mentioned that these polynomials can also help for models with
time-dependent coefficients

We have shown the aspects involving polynomials, leaving aside the other
aspects like theorems proving convergence, point-wise and in distribution

It was unfortunately not possible to give proofs and/or examples, see the
references

For deeper references on scalar and matrix polynomials, respectively, see
Barnett (1983) and Gohberg et al. (1982)

Thank you very much for your attention

Reminder: the slides are available from me at Guy.Melard@ulb.be

The references follow
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- Boubacar Mäınassara, Y. & Rabehasaina, L. (2019). Estimation of weak ARMA models with
regime changes. Statistical Inference for Stochastic Processes, in press, DOI:
10.1007/s11203-019-09202-3.
- Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis, forecasting and control,
Holden-Day, San Francisco.
- Box, G. E. P., Jenkins, G. M., Reinsel G. C. & Ljung, G. M. (2015). Time series analysis,
forecasting and control, 5th edn. Wiley, New York.
- Demeure, C.J., & Mullis, C.T. (1989). The Euclid algorithm and the fast computation of
cross-covariance and autocovariance sequences. IEEE Trans. Acoust., Speech and Signal
Processing 37, 545–552.
- Francq, C., & Gautier, A. (2003). Estimation of time-varying ARMA models and applications to
series subject to Markovian changes in regime. Working Paper, Université Lille 3,
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- Söderström, T. (1984). Description of a program for integrating rational functions around the
unit circle. Technical Report 8467R, Department of Technology, Uppsala University.

Guy Mélard Polynomials and statistical analysis of time series models 40/38



Introduction
ARMA models and statistics

VARMA and time-dependent models
Other involvements of polynomials and conclusions

Equality of roots
Information matrix
Theoretical ACF
Conclusions

References III

- Tunnicliffe Wilson, G.T. (1979). Some efficient computational procedures for high order ARMA
models. Journal of Statistical Computation and Simulation 8, 303–309.

Guy Mélard Polynomials and statistical analysis of time series models 41/38


	Outline
	Main Talk
	Introduction
	Motivations
	Two examples

	ARMA models and statistics
	ARMA models
	Statistics
	Polynomial roots
	Parameter estimation and MA form

	VARMA and time-dependent models
	VARMA models
	Time-dependent models
	Estimation theory

	Other involvements of polynomials and conclusions
	Equality of roots
	Information matrix
	Theoretical ACF
	Conclusions



